/mcp [BETA] - Model Context Protocol
Expose MCP tools on LiteLLM Proxy Server​
This allows you to define tools that can be called by any MCP compatible client. Define your mcp_servers
with LiteLLM and all your clients can list and call available tools.
LiteLLM MCP Architecture: Use MCP tools with all LiteLLM supported models
How it works​
LiteLLM exposes the following MCP endpoints:
/mcp/tools/list
- List all available tools/mcp/tools/call
- Call a specific tool with the provided arguments
When MCP clients connect to LiteLLM they can follow this workflow:
- Connect to the LiteLLM MCP server
- List all available tools on LiteLLM
- Client makes LLM API request with tool call(s)
- LLM API returns which tools to call and with what arguments
- MCP client makes MCP tool calls to LiteLLM
- LiteLLM makes the tool calls to the appropriate MCP server
- LiteLLM returns the tool call results to the MCP client
Usage​
1. Define your tools on under mcp_servers
in your config.yaml file.​
LiteLLM allows you to define your tools on the mcp_servers
section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call list_tools
).
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: sk-xxxxxxx
mcp_servers:
{
"zapier_mcp": {
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
},
"fetch": {
"url": "http://localhost:8000/sse"
}
}
2. Start LiteLLM Gateway​
- Docker Run
- litellm pip
docker run -d \
-p 4000:4000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
--name my-app \
-v $(pwd)/my_config.yaml:/app/config.yaml \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
litellm --config config.yaml --detailed_debug
3. Make an LLM API request​
In this example we will do the following:
- Use MCP client to list MCP tools on LiteLLM Proxy
- Use
transform_mcp_tool_to_openai_tool
to convert MCP tools to OpenAI tools - Provide the MCP tools to
gpt-4o
- Handle tool call from
gpt-4o
- Convert OpenAI tool call to MCP tool call
- Execute tool call on MCP server
import asyncio
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionUserMessageParam
from mcp import ClientSession
from mcp.client.sse import sse_client
from litellm.experimental_mcp_client.tools import (
transform_mcp_tool_to_openai_tool,
transform_openai_tool_call_request_to_mcp_tool_call_request,
)
async def main():
# Initialize clients
# point OpenAI client to LiteLLM Proxy
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
# Point MCP client to LiteLLM Proxy
async with sse_client("http://localhost:4000/mcp/") as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# 1. List MCP tools on LiteLLM Proxy
mcp_tools = await session.list_tools()
print("List of MCP tools for MCP server:", mcp_tools.tools)
# Create message
messages = [
ChatCompletionUserMessageParam(
content="Send an email about LiteLLM supporting MCP", role="user"
)
]
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
openai_tools = [
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
]
# 3. Provide the MCP tools to `gpt-4o`
response = await client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
# 4. Handle tool call from `gpt-4o`
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
if tool_call:
# 5. Convert OpenAI tool call to MCP tool call
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
mcp_call = (
transform_openai_tool_call_request_to_mcp_tool_call_request(
openai_tool=tool_call.model_dump()
)
)
# 6. Execute tool call on MCP server
result = await session.call_tool(
name=mcp_call.name, arguments=mcp_call.arguments
)
print("Result:", result)
# Run it
asyncio.run(main())
LiteLLM Python SDK MCP Bridge​
LiteLLM Python SDK acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
- List Available MCP Tools: OpenAI clients can view all available MCP tools
litellm.experimental_mcp_client.load_mcp_tools
to list all available MCP tools
- Call MCP Tools: OpenAI clients can call MCP tools
litellm.experimental_mcp_client.call_openai_tool
to call an OpenAI tool on an MCP server
1. List Available MCP Tools​
In this example we'll use litellm.experimental_mcp_client.load_mcp_tools
to list all available MCP tools on any MCP server. This method can be used in two ways:
format="mcp"
- (default) Return MCP tools- Returns:
mcp.types.Tool
- Returns:
format="openai"
- Return MCP tools converted to OpenAI API compatible tools. Allows using with OpenAI endpoints.- Returns:
openai.types.chat.ChatCompletionToolParam
- Returns:
- LiteLLM Python SDK
- OpenAI SDK + LiteLLM Proxy
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
import litellm
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
In this example we'll walk through how you can use the OpenAI SDK pointed to the LiteLLM proxy to call MCP tools. The key difference here is we use the OpenAI SDK to make the LLM API request
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from openai import OpenAI
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools using litellm mcp client
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Use OpenAI SDK pointed to LiteLLM proxy
client = OpenAI(
api_key="your-api-key", # Your LiteLLM proxy API key
base_url="http://localhost:4000" # Your LiteLLM proxy URL
)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("LLM RESPONSE: ", llm_response)
2. List and Call MCP Tools​
In this example we'll use
litellm.experimental_mcp_client.load_mcp_tools
to list all available MCP tools on any MCP serverlitellm.experimental_mcp_client.call_openai_tool
to call an OpenAI tool on an MCP server
The first llm response returns a list of OpenAI tools. We take the first tool call from the LLM response and pass it to litellm.experimental_mcp_client.call_openai_tool
to call the tool on the MCP server.
How litellm.experimental_mcp_client.call_openai_tool
works​
- Accepts an OpenAI Tool Call from the LLM response
- Converts the OpenAI Tool Call to an MCP Tool
- Calls the MCP Tool on the MCP server
- Returns the result of the MCP Tool call
- LiteLLM Python SDK
- OpenAI SDK + LiteLLM Proxy
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
import litellm
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
openai_tool = llm_response["choices"][0]["message"]["tool_calls"][0]
# Call the tool using MCP client
call_result = await experimental_mcp_client.call_openai_tool(
session=session,
openai_tool=openai_tool,
)
print("MCP TOOL CALL RESULT: ", call_result)
# send the tool result to the LLM
messages.append(llm_response["choices"][0]["message"])
messages.append(
{
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": openai_tool["id"],
}
)
print("final messages with tool result: ", messages)
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print(
"FINAL LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str)
)
In this example we'll walk through how you can use the OpenAI SDK pointed to the LiteLLM proxy to call MCP tools. The key difference here is we use the OpenAI SDK to make the LLM API request
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from openai import OpenAI
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools using litellm mcp client
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Use OpenAI SDK pointed to LiteLLM proxy
client = OpenAI(
api_key="your-api-key", # Your LiteLLM proxy API key
base_url="http://localhost:8000" # Your LiteLLM proxy URL
)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("LLM RESPONSE: ", llm_response)
# Get the first tool call
tool_call = llm_response.choices[0].message.tool_calls[0]
# Call the tool using MCP client
call_result = await experimental_mcp_client.call_openai_tool(
session=session,
openai_tool=tool_call.model_dump(),
)
print("MCP TOOL CALL RESULT: ", call_result)
# Send the tool result back to the LLM
messages.append(llm_response.choices[0].message.model_dump())
messages.append({
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": tool_call.id,
})
final_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("FINAL RESPONSE: ", final_response)